

4M SRAM (256-kword \times 16-bit)

REJ03C0311-0100 Rev.1.00 May.24.2007

Description

The R1LV0416D is a 4-Mbit static RAM organized 256-kword \times 16-bit, fabricated by Renesas's high-performance 0.15 μ m CMOS and TFT technologies. R1LV0416D Series has realized higher density, higher performance and low power consumption. The R1LV0416D Series offers low power standby power dissipation; therefore, it is suitable for battery backup systems. The R1LV0416D Series is packaged in a 44-pin thin small outline mount device, or a 48-ball fine pitch ball grid array.

Features

Single 3.0 V supply: 2.7 V to 3.6 VFast access time: 55/70 ns (max)

• Power dissipation:

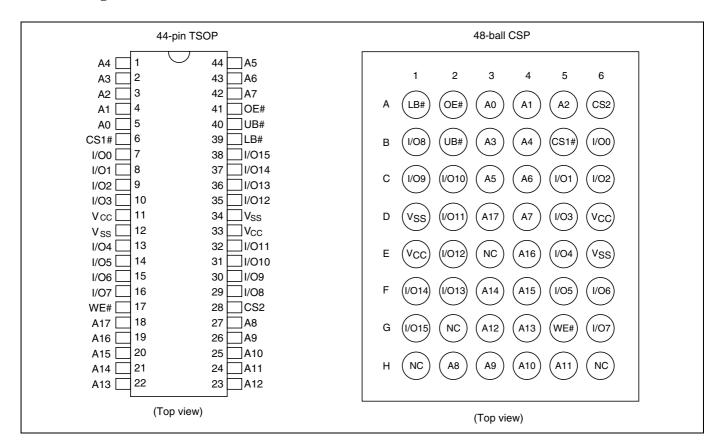
— Standby: $3 \mu W \text{ (typ) } (V_{cc} = 3.0 \text{ V})$

• Equal access and cycle times

• Common data input and output.

— Three state output

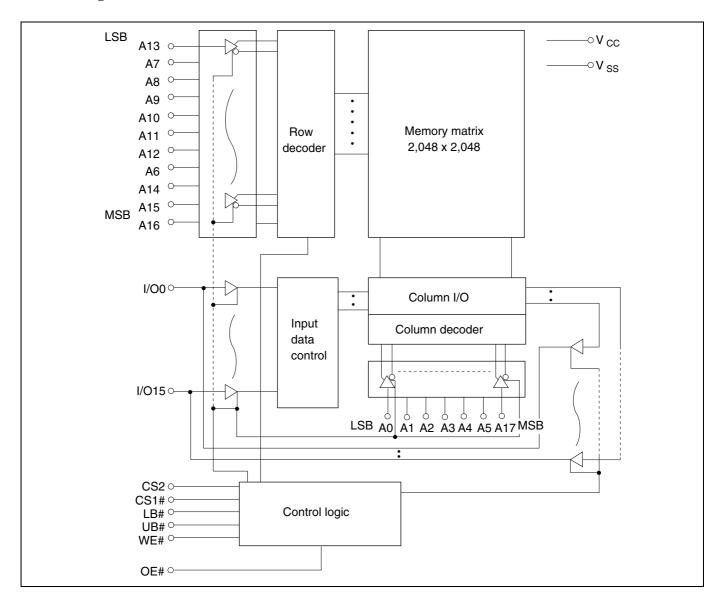
• Battery backup operation.


— 2 chip selection for battery backup

• Temperature Range: -40 to +85°C

Ordering Information

Type No.	Access time	Package
R1LV0416DSB-5SI	55 ns	400-mil 44-pin plastic TSOP II
R1LV0416DSB-7LI	70 ns	PTSB0044GA-A (44P3W-H)
R1LV0416DBG-5SI	55 ns	48-ball CSP with 0.75 mm ball pitch
R1LV0416DBG-7LI	70 ns	PTBG0048HB-A (48FHH)


Pin Arrangement

Pin Description

Pin name	Function
A0 to A17	Address input
I/O0 to I/O15	Data input/output
CS1# (CS1)	Chip select 1
CS2	Chip select 2
OE# (OE)	Output enable
WE# (WE)	Write enable
LB# (LB)	Lower byte select
UB# (UB)	Upper byte select
V _{cc}	Power supply
V _{ss}	Ground
NC	No connection

Block Diagram

Operation Table

CS1#	CS2	WE#	OE#	UB#	LB#	I/O0 to I/O7	I/O8 to I/O15	Operation
Н	×	×	×	×	×	High-Z	High-Z	Standby
×	L	×	×	×	×	High-Z	High-Z	Standby
×	×	×	×	Н	Н	High-Z	High-Z	Standby
L	Н	Н	L	L	L	Dout	Dout	Read
L	Н	Н	L	Н	L	Dout	High-Z	Lower byte read
L	Н	Н	L	L	Н	High-Z	Dout	Upper byte read
L	Н	L	×	L	L	Din	Din	Write
L	Н	L	×	Н	L	Din	High-Z	Lower byte write
L	Н	L	×	L	Н	High-Z	Din	Upper byte write
L	Н	Н	Н	×	×	High-Z	High-Z	Output disable

Note: H: V_{H} , L: V_{L} , \times : V_{H} or V_{L}

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage relative to V _{ss}	V _{cc}	-0.5 to +4.6	V
Terminal voltage on any pin relative to V _{ss}	V _T	-0.5^{*1} to $V_{cc} + 0.3^{*2}$	V
Power dissipation	P _T	0.7	W
Operating temperature1	Topr	-40 to +85	°C
Storage temperature range	Tstg	-65 to +150	°C
Storage temperature range under bias	Tbias	-40 to +85	°C

Notes: 1. V_T min: -3.0 V for pulse half-width ≤ 30 ns.

2. Maximum voltage is +4.6 V.

DC Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	V _{cc}	2.7	3.0	3.6	V	
	V _{ss}	0	0	0	V	
Input high voltage	V _{IH}	2.2	_	V _{cc} + 0.3	V	
Input low voltage	V _{IL}	-0.3	_	0.6	V	1
Ambient temperature range	Та	-40	_	+85	°C	

Note: 1. V_{IL} min: -3.0 V for pulse half-width ≤ 30 ns.

DC Characteristics

Para	Parameter			Min	Тур	Max	Unit	Test conditions
Input leakage current			_	_	_	1	μΑ	Vin = V _{ss} to V _{cc}
Output leakage currer	nt		I _{LO}	_	1	1	μА	$CS1\# = V_{IH} \text{ or } CS2 = V_{IL} \text{ or } OE\# = V_{IH} \text{ or } WE\# = V_{IL} \text{ or } LB\# = UB\# = V_{IH}, V_{I/O} = V_{SS} \text{ to } V_{CC}$
Operating current			I _{cc}			20	mA	$CS1# = V_{IL}, CS2 = V_{IH},$ Others = $V_{IH}/V_{IL}, I_{I/O} = 0 \text{ mA}$
Average operating cur	rrent		l _{cc1}			25	mA	Min. cycle, duty = 100%, $I_{\text{I/O}} = 0$ mA, CS1# = V_{IL} , CS2 = V_{IH} , Others = $V_{\text{IH}}/V_{\text{IL}}$
			I _{CC2}	_		5	mA	Cycle time = 1 μ s, duty = 100%, $I_{\nu_{C}} = 0$ mA, CS1# \leq 0.2 V, CS2 \geq V _{CC} $-$ 0.2 V $V_{IH} \geq$ V _{CC} $-$ 0.2 V, $V_{IL} \leq$ 0.2 V
Standby current			I _{SB}	_	0.1*1	0.3	mA	CS2 = V _{IL}
Standby current	–5SI	to +85°C	I _{SB1}	_	_	10	μΑ	Vin ≥ 0 V
		to +70°C	I _{SB1}	_	_	8	μΑ	(1) 0 V ≤ CS2 ≤ 0.2 V or
		to +40°C	I _{SB1}	_	_	3	μΑ	(2) CS1# \geq V _{cc} $-$ 0.2 V,
		to +25°C	I _{SB1}	_	1 * ¹	2.5	μΑ	$CS2 \ge V_{cc} - 0.2 \text{ V or}$
	-7LI	to +85°C	I _{SB1}	_	_	20	μΑ	(3) LB# = UB# \geq V _{cc} $-$ 0.2 V,
		to +70°C	I _{SB1}	_		16	μΑ	$CS2 \ge V_{cc} - 0.2 V,$
		to +40°C	I _{SB1}	_		10	μΑ	CS1# ≤ 0.2 V
		to +25°C	I _{SB1}	_	1 *1	10	μΑ	Average values
Output high voltage	•		V _{OH}	2.4	_	_	V	$I_{OH} = -1 \text{ mA}$
		V _{OH2}	V _{cc} - 0.2	_	_	V	$I_{OH} = -100 \mu A$	
Output low voltage			V _{oL}	_	_	0.4	V	I _{OL} = 2 mA
			V _{OL2}	_	_	0.2	V	$I_{OL} = 100 \mu A$

Note: 1. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and specified loading, and not guaranteed.

Capacitance

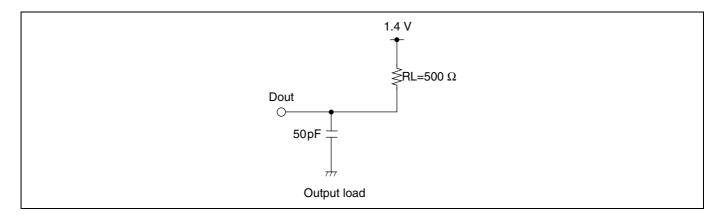
 $(Ta = +25^{\circ}C, f = 1.0 \text{ MHz})$

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions	Note
Input capacitance	Cin	_	_	8	pF	Vin = 0 V	1
Input/output capacitance	C _{I/O}	_	_	10	pF	V _{1/O} = 0 V	1

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics

 $(Ta = -40 \text{ to } +85^{\circ}\text{C}, \ V_{cc} = 2.7 \ \text{V to } 3.6 \ \text{V})$


Test Conditions

Input pulse levels: $V_{IL} = 0.4 \text{ V}$, $V_{IH} = 2.4 \text{ V}$

• Input rise and fall time: 5 ns

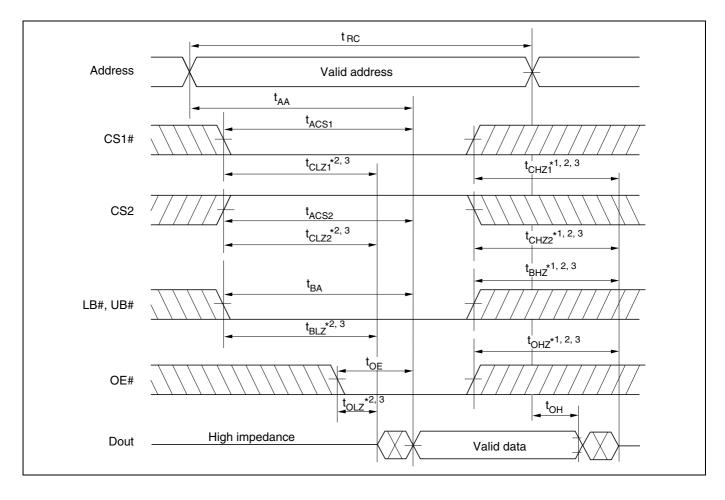
• Input/output timing reference levels: 1.4 V

• Output load: See figures (Including scope and jig)

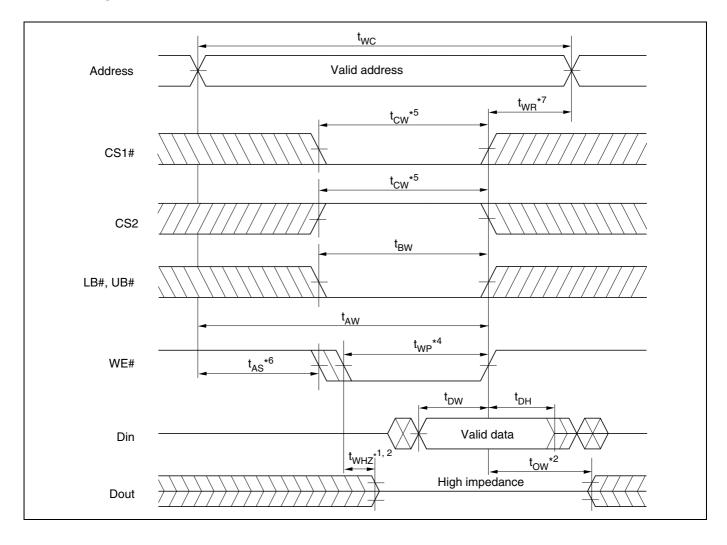
Read Cycle

			R1LV	0416D				
		-5	SI	-7	LI			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes	
Read cycle time	t _{RC}	55	_	70	_	ns		
Address access time	t _{AA}	_	55	_	70	ns		
Chip select access time	t _{ACS1}	_	55	_	70	ns		
	t _{ACS2}	_	55	_	70	ns		
Output enable to output valid	t _{oe}	_	35	_	40	ns		
Output hold from address change	t _{oн}	10	_	10	_	ns		
LB#, UB# access time	t _{BA}	_	55	_	70	ns		
Chip select to output in low-Z	t _{CLZ1}	10	_	10	_	ns	2, 3	
	t _{CLZ2}	10	_	10	_	ns	2, 3	
LB#, UB# disable to low-Z	t _{BLZ}	5	_	5	_	ns	2, 3	
Output enable to output in low-Z	t _{oLZ}	5	_	5	_	ns	2, 3	
Chip deselect to output in high-Z	t _{CHZ1}	0	20	0	25	ns	1, 2, 3	
	t _{CHZ2}	0	20	0	25	ns	1, 2, 3	
LB#, UB# disable to high-Z	t _{внz}	0	20	0	25	ns	1, 2, 3	
Output disable to output in high-Z	t _{ohz}	0	20	0	25	ns	1, 2, 3	

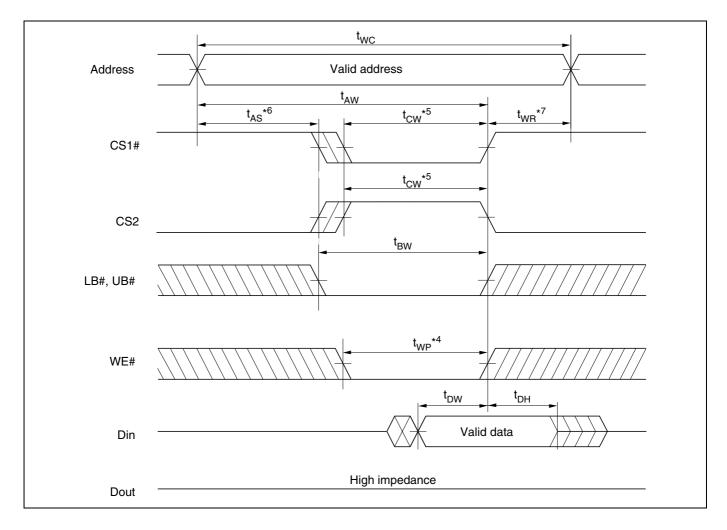
Write Cycle

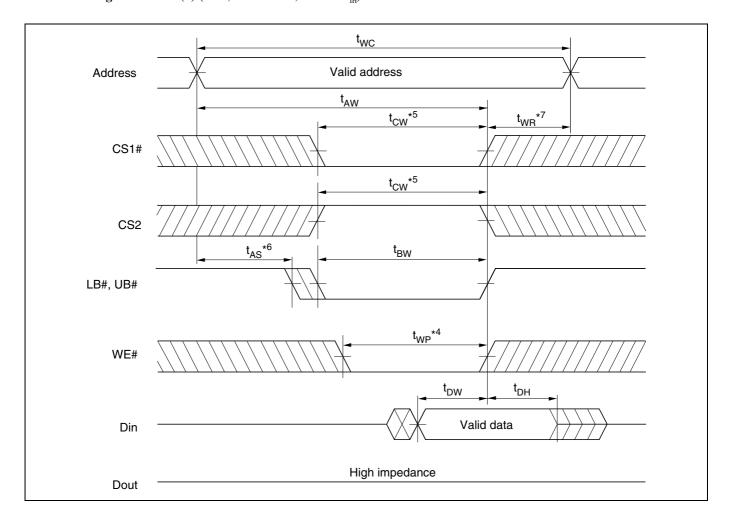

		-5	SI	-7	'LI	1	
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{wc}	55	_	70	_	ns	
Address valid to end of write	t _{AW}	50	_	60	_	ns	
Chip selection to end of write	t _{cw}	50	_	60	_	ns	5
Write pulse width	t _{wP}	40	_	50	_	ns	4
LB#, UB# valid to end of write	t _{sw}	50	_	55	_	ns	
Address setup time	t _{AS}	0	_	0	_	ns	6
Write recovery time	t _{wR}	0	_	0	_	ns	7
Data to write time overlap	t _{DW}	25	_	30	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	ns	
Output active from end of write	t _{ow}	5	_	5	_	ns	2
Output disable to output in high-Z	t _{ohz}	0	20	0	25	ns	1, 2, 3
Write to output in high-Z	t _{wHZ}	0	20	0	25	ns	1, 2

Notes: 1. $t_{_{CHZ^{1}}}$, $t_{_{OHZ^{1}}}$, $t_{_{WHZ}}$ and $t_{_{BHZ}}$ are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.


- 2. This parameter is sampled and not 100% tested.
- 3. At any given temperature and voltage condition, t_{HZ} max is less than t_{LZ} min both for a given device and from device to device.
- 4. A write occurs during the overlap of a low CS1#, a high CS2, a low WE# and a low LB# or a low UB#. A write begins at the latest transition among CS1# going low, CS2 going high, WE# going low and LB# going low or UB# going low. A write ends at the earliest transition among CS1# going high, CS2 going low, WE# going high and LB# going high or UB# going high. t_{wp} is measured from the beginning of write to the end of write.
- 5. t_{cw} is measured from the later of CS1# going low or CS2 going high to the end of write.
- 6. t_{AS} is measured from the address valid to the beginning of write.
- 7. t_{ws} is measured from the earliest of CS1# or WE# going high or CS2 going low to the end of write cycle.

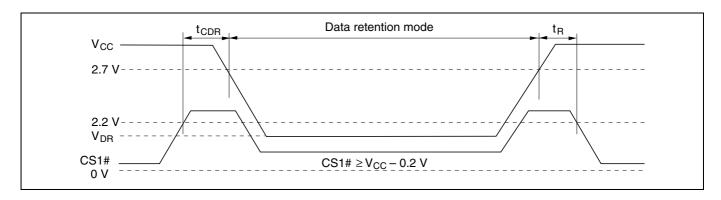
Timing Waveform


Read Timing Waveform (WE# = V_{IH})

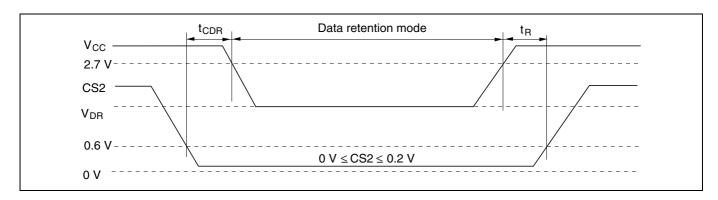

Write Timing Waveform (1) (WE# Clock)

Write Timing Waveform (2) (CS# Clock, OE# = V_{H})

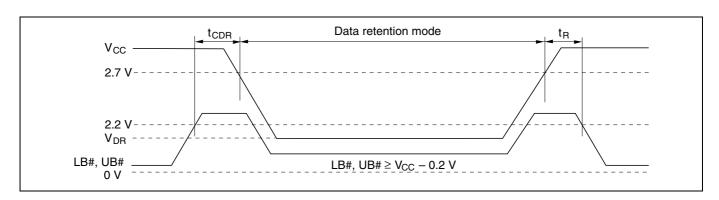
Write Timing Waveform (3) (LB#, UB# Clock, OE# = $V_{\mbox{\tiny IH}}$)


Low \boldsymbol{V}_{cc} Data Retention Characteristics

 $(Ta = -40 \text{ to } +85^{\circ}\text{C})$


	Param	neter	Symbol	Min	Тур	Max	Unit	Test conditions
V _{cc} for data retention			V _{DR}	2.0	_	_	V	$\begin{split} &\text{Vin} \ge 0\text{V} \\ &(1) \ 0 \ \text{V} \le \text{CS2} \le 0.2 \ \text{V} \ \text{or} \\ &(2) \ \text{CS2} \ge \text{V}_{\text{cc}} - 0.2 \ \text{V}, \\ &\text{CS1\#} \ge \text{V}_{\text{cc}} - 0.2 \ \text{V} \ \text{or} \\ &(3) \ \text{LB\#} = \text{UB\#} \ge \text{V}_{\text{cc}} - 0.2 \ \text{V}, \\ &\text{CS2} \ge \text{V}_{\text{cc}} - 0.2 \ \text{V}, \\ &\text{CS1\#} \le 0.2 \ \text{V} \end{split}$
Data	–5SI	to +85°C	CCDR	_	_	10	μΑ	V _{cc} = 3.0 V, Vin ≥ 0V
retention current		to +70°C	I _{CCDR}	_	_	8	μΑ	(1) $0 \text{ V} \le \text{CS2} \le 0.2 \text{ V} \text{ or}$ (2) $\text{CS2} \ge \text{V}_{cc} - 0.2 \text{ V},$
Carrone		to +40°C	I _{CCDR}	_	_	3	μΑ	$CS1# \ge V_{cc} - 0.2 \text{ V or}$
		to +25°C	CCDR	_	1 * ¹	2.5	μΑ	(3) LB# = UB# \geq V _{cc} - 0.2 V,
	-7LI	to +85°C	CCDR	_	_	20	μΑ	$CS2 \ge V_{cc} - 0.2 \text{ V},$ $CS1\# \le 0.2 \text{ V}$
		to +70°C	CCDR	_	_	16	μΑ	Average values
		to +40°C	I _{CCDR}	_	_	10	μΑ	
	CCDR	_	1 * ¹	10	μΑ			
Chip deselect to data retention time			t _{CDR}	0	_	_	ns	See retention waveform
Operation re	ecovery time		t _R	5	_	_	ms	

Note: 1. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and specified loading, and not guaranteed.


Low V_{cc} Data Retention Timing Waveform (1) (CS1# Controlled)

Low V_{cc} Data Retention Timing Waveform (2) (CS2 Controlled)

 $\textbf{Low V}_{cc} \ \textbf{Data Retention Timing Waveform (3)} \ (LB\#, UB\# \ Controlled)$

Revision History

R1LV0416D Series Data Sheet

Rev.	Date		Contents of Modification
		Page	Description
0.01	Dec. 25, 2006	_	Initial issue
1.00	May. 24, 2007	2	Ordering Information
			R1LV0416DSB-5S% to R1LV0416DSB-5SI
			R1LV0416DSB-7L% to R1LV0416DSB-7LI
			R1LV0416DBG-5S% to R1LV0416DBG-5SI
			R1LV0416DBG-7L% to R1LV0416DBG-7LI
		3	Pin Arrangement
			A6 to A13, A13 to A6
		4	Change of Block Diagram
		5	Absolute Maximum Ratings: Deletion of R ver. specification
		5	DC Operating Conditions: Deletion of R ver. specification
		6	DC Characteristics
			I _{SB1} (-5SI) (to +25°C) max: 3 μA to 2.5 μA
		7	AC Characteristics: Change of Test Conditions
		14	Low V _{CC} Data Retention Characteristics
			I _{CCDR} (-5SI) (to +25°C) max: 3 μA to 2.5 μA
			Deletion of note 2

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510